Upper Bounds for the Number of Hamiltonian Cycles
نویسنده
چکیده
Abstract. An upper bound for the number of Hamiltonian cycles of symmetric diagraphs is established first in this paper, which is tighter than the famous Minc’s bound and the Brégman’s bound. A transformation on graphs is proposed, so that counting the number of Hamiltonian cycles of an undirected graph can be done by counting the number of Hamiltonian cycles of its corresponding symmetric directed graph. In this way, an upper bound for the number of Hamiltonian cycles of undirected graphs is also obtained.
منابع مشابه
On the Number of Cycles in Planar Graphs
We investigate the maximum number of simple cycles and the maximum number of Hamiltonian cycles in a planar graph G with n vertices. Using the transfer matrix method we construct a family of graphs which have at least 2.4262 simple cycles and at least 2.0845 Hamilton cycles. Based on counting arguments for perfect matchings we prove that 2.3404 is an upper bound for the number of Hamiltonian cy...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملThe maximum number of minimal codewords in long codes
Upper bounds on the maximum number of minimal codewords in a binary code follow from the theory of matroids. Random coding provide lower bounds. In this paper we compare these bounds with analogous bounds for the cycle code of graphs. This problem (in the graphic case) was considered in 1981 by Entringer and Slater who asked if a connected graph with p vertices and q edges can have only slightl...
متن کاملGeometric-Arithmetic Index of Hamiltonian Fullerenes
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.
متن کاملOn the Number of Hamilton Cycles in Bounded Degree Graphs
The main contribution of this paper is a new approach for enumerating Hamilton cycles in bounded degree graphs – deriving thereby extremal bounds. We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276), improving on Eppstein’s previous bound. The resulting new upper bound of O(1.276) for the maximum number of Hamilton cycles in 3-regul...
متن کامل